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SHAPE DESCRIPTION VIA THE USE OF CRITICAL POINTS*

Herbert Freeman
Rensselaer Polytechnic Institute
Troy, New York 12181

Summary

A key element in pattern recognition is the des-
cription of shape. For twvo-dimensional objects
(blobs), shape is conveyed by the curving of the bound-
ary line and is normally considered independent of

scale and orientation. The curving may be regarded as -

a concatentation of arcs of varying instantaneous radii
of curvature, possibly interspersed occasionally by
discontinuities. The description of shape is facili-
tated by segmenting the boundary line at so-called
eritical points - corners (discontinuities in curva-
ture), points of inflection, and curvature maxima.
Additional critical points are intersections and
points of tangency. Algoritims are described for ex-
tracting such critical points in the presence of noise.
An illustration is given showing how the critical
points may be used in the development of a shape des-
cription system.

1. Introduction

The recognition of two-dimensional spatial pat-
terns is intimately linked with the classification of
shape. Shape is the composite effect of curvature; it
is a property of a curve, independent of scale and
orientation, and refers to the manner in which the
curve- deviates from some norm, such as a straight line
or a circle. We shall use the terms "line" and "curve"
interchangeably; a line is not presumed to be straight
unless explicitly so identified. Neither must a curve
be non-straight. The kinds of curve topologies of
interest to us are shown in Fig. 1.

A closed curve traces a single path without end.
An open curve has two distinct end points. A closed
curve is always considered to be simply connected; a
multiply-connected curve is regarded as a set of two
or more distinct, closed curves, one of which encloses
all others. Both open and closed curves may intersect
other open or closed curves, as well as themselves.
A closed curve has a definite sense of directionm,
which is such as to place the interior toward the
right. For an open curve, the direction is arbi-
trary.

The points at which curves intersect or touch
will be called junctions. Junctions are characterized
by their radiality, vhich is the count of the number
of lines entering the junction. We speak of triradial,
quadradial, quintredial, etc. jJunctions. Except in
very rare cases, pictures of natural processes exhibit
only triradial junctions. The existence of a quad-
radial Junction is almost always evidence of a man-
made feature. Junctions of radiality greater than
four are most rare.

At a jJunction of radiality n, pairs of adjacent
curves will form n distinct, non-crossing paths
through the junction. At least n-2 of these paths
must exhibit a slope discontinuity (corner) at the
Junction. -

We shall regard all tvo-dimensional patterns as
occurring in the form of maps. Maps are special kinds
of line drawings that occur in the following four

¥ This vork vas supported by the Air Force Office of
Scientific Research, Directorate of Mathematical and
Information Sciences, under Grant AFOSR 76-2937.
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types - blob maps, contour maps, flow maps, and region
maps. The four types are illustrated in Fig. 2.
Different types may be overlaid to form composite maps.

Blob maps are maps containing only closed curves,
none of wvhich may contain another closed curve. Some
of the curves may be closed via the map boundary. The
closed curves (which each bound a blob) may touch but
not intersect each other. There are no end points.

Contour maps are like blob maps except that one
closed curve may contain one or more other closed
curves. Two curves may be tangent to each other pro-
vided one of the curves is contained within the other.
There are no end points.

Flov maps contain only open curves and these are
connected to form one or more tree structures. There
are no loops. All curves terminate either at junc-
tions or at end points. For each connected tree
structure, precisely one end point coincides with the
map boundary.

In region maps, the space is divided into mutu-
ally exclusive areas. All lines begin and terminate
at junctions or are closed (rare). There are no end
points.

We identify three kinds of problem tasks that
involve shape - "matching", "fitting", and "classify-
ing". In "matching" we desire to establish equiva-
lence (up to a certain level of precision) between
two curves which may be open or closed. The equiva-
lence may be on the basis of (1) shape alone,

(2) shape and scale, (3) shape and orientation, or
(4) shape, scale, and orientation.

In "fitting" we must establish that two open
curves (wvhich are usually parts of two different
closed curves) are equivalent in scale and complement-
ary in shape. Two curves are said to be complementary
in shape if they are geametrically similar but are
traced out in the opposite sense. (The direction of
tracing is determined by the area bounded, which by
convention, is always assumed to lie toward the
right.)

"Classifying" refers to the process of assigning
given curves to predetermined categories. The assign-
ment may be based solely on shape, or it may involve
scale and orientation as well.

2. Shape Description

One of the difficulties in any shape processing
task is the lack of a definitive way of describing
shape. Many investigators have devoted attention to
this task and a variety of approaches have been

propoudl'.r. We shall follow a method originally pro-

posed by Attneave and Arnoult and divide a curve into
segments and then use relatively simple features for
characterizing the segments. Key to this method is an
effective segmentation scheme. Later we shall also
consider a scheme, applicable to closed curves only,
that does not require segmentation.

In all that follows it will be assumed that the
curves have been quantized into a square lattice of

sufficient fineness to preserve the desired detail
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and then encoded in terms of the 8-direction chain

t:odo2 .

.

We shall first examine the shape matching problem.
A tried and effective technique for matching two
chains (open or closed) is the chain correlation
scheme, so called because of its analogy to conven-

tional signal correluiong. It is given by

'
O.b(d)- - 1zl’c01(ni-bi.d)ﬂ/h

vhere the 8, and bi are, respectively, the ordered

links in the two chains. Cheain correlation hes the
dravback, however, of VYeing rigidly dependent on scale
and orientation. To use it for matching the shape of
two chains cf different scale and orientation, one of
the chains must first be rotated and scaled to bring
it into aligmment with the other. To determine the
smounts of rotation and scaling required, scme further
information about the two chains must be available.

To take a very simple example, suppose two open
chains are to be checked for a shape match, independ-
ently of scale and orientation. One can connect the
two end points of each chain with a straight line seg-
ment. The relative lengths of the two segments then
provides a basis for adjusting the scale of onme chain
to that of the other; the angle between the two seg-
ments establishes the amount of rotation required to
bring the two chains into alignment. (Note that suck
scaling and rotating introduces additional quantiza-
tion noise.) After the scale and orientation adjust-
ment, the two chains can be correlated against each
other to determine the exact degree of match.

The simple scheme just descridbed has serious defi-
ciencies. First of all, it will not work for closed
curves. Second, the scheme is overly dependent on the
precise locations of the end points. Relatively
slight variations here vill cause erronecus scale and
orientation normalizations, and result in failure of
the correlation test, even for chain pairs that are
othervise very similar in shape. Finally, the scheme
is inapplicable to the "fitting" problem, vhere a
section of one chain is to be shown to be of comple-
mentary shape to & section of another chain - without
any & priori kmowledge of orientation (and, possidly,
scale as well). We shall now develop a more powerful
method vhich overcames these difficulties.

Even if we expect two curves to match in their
entirety, it would be unwise to test them for match
over their full length at once. Part of one chain may
be missing or severely distorted by noise, or perhaps
a part may have been compressed. Or a chain may have
been bent, placing its two parts at s wrong angle
relative to each other. Although such effects clearly
reduce the quality of a match, they should not be
permitted to overvhelm evidence of good matching in
other parts of the chains. The only solution to this
is to segment the chains, and to proceed with the
match on a section-by-section basis.

If the chains to be matched are supposed to have
the same scale and orienmtation, and cross-correlation
is to be used, segmentation presents no problem.
Since in the correlation process one chain (or chain
section) is anyway shifted relative to the other,
selection of the segmentation points is virtually
arbitrary. A totally different approach, however, is
called for if the relative scale and orientation of
the two chains are not a priori kmown.

3. Critical Points

If we wish to compare two chains independently of
their relative scale and crientation, we must find
features in them that are invariant under these para-
meters. For this purpose we shall call upon the so~
called "critical points" of the chains.

In classical geometry, the "critical points" of
8 curve are its maxima, minima, and points of inflec-
tion. Our interest here in curves is more far-
reaching, and ve shall expand the concept of critical
points to include also discontinuities in curvature,
end points, intersections (Jjunctions), and points of
tangency. To a varying degree, these points are all
well-defined and their character is unaffected by the
transformations of scale and rotation.

Let us consider the two curves shown in Fig. 3.
Visual inspection shows them to be of apparent similar
shape, though, of difference size, different orienta-
tion, and different semse of direction. We note that
each curve has two fairly sharp discontipuities in
curvature (DICs). If the two curves are indeed of the
same shape and there is a pairwise correspondence be-
tween the DICs, then there must be point-for-point
shape correspondence in the sections between the DICs.
And, of course, all shape-related features that are
independent of scale and orientation will be the same
for both.

We first connect the two DICs in each curve with
a straight line segment and determine its length.
Suitable features to be computed next are (1) the
length of the curve section between the DICs, (2) the
total "bay" ares lying between the curve section and
the straight line segment (the "bays" lie toward the
left of the curve), (3) the total "peninsula" area
(lying toward the right of the curve), (4) the maximum
"bay" depth, and (5) the maximum "peninsula" depth.
All these features are, of course, independent of
orientation. To make them also independent of scale,
we divide each linear feature by the segment distance

ﬁ. and each area feature, by # The features are
illustrated in Fig. 3.

Simple, efficient algoritims exist for computing
the foregoing features if the curves are represented

in the form of chunllo. Observe that if for two
curve sections the features are pairwise in close
agreement, then we have strong indication that the
curves are of the same shape; though, of course, a
correlation or other point-by-point check is needed to
establish this for certain. Conversely, any major
discrepancy in a feature is indicative of a difference
in shape. If for two chains all features match except
that the bay features of one match to the peninsula
features of the other, then the two chains are likely
to be of complementary shape and thus potemtial candi-
dates for fitting.

In the foregoing example we selected DICs to
define curve sections for matching. Of all the criti-
cal points, DICs (as well as junctions) are the most
sharply and most reliably defined. End points are
also sharply defined; hovever, their location is less
dependable since occlusion of part of a curve will
cause a false end point to be generated. The next
best critical points to use (if DICs and junctions are
not available)are points of inflection and points of
maximum curvature (maxima or minima). We shall dis-
cuss these further in the next section in connection
with the determination of critical points.
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Junctions and end points require no special
effort for their determination; they are available
directly from the chain data structure. Discontinui-
ties in curvature, howvever, must be extracted by com-
putation. A scheme that has been found to be effec~

tive for this purpose is the an,
described as follows.

We consider a chain (ui}n. lil:(O.....T). and
1

define a straight line segment i that connects the

. §
the initium of & s+l to the terminus of 8. The
length of L can vary from s maximm of sv/Z to a min-

i
imum of 1; however, for a vell-quantized curve, it
should never be less than s8/2. The actual length of

L: is, of course, given by

1/2
1} = (xD? e ()3
i

vhere P b T O
Jui-g+l

- 11. %
Jui-gel Y

ix

and vhere the L and liy are, respectively, the x and
Yy components of the cbain links, s, , sy e{-1,0,1}.
The angle betwveen the x axis and the forward
direction of the line segment is
s -1l 8,8 s
o; = tan™ Y/X; 1f lx:| > It
-1 s s
= cot™ xp/ry 1 |xj| < |¥g]
and cen vary from O to 360 degrees. Of particular
interest is the variation in this angle as L: scans
over the chain. Note that fer a closed chain,’
n’_ = .1-11' We define
] ] ]
by * % = %

as the incremental curvature of the chain; it is
equal to twice the mean over two successive angular
differences. The incremental curvature is a smoothed
measure of curvature; the greater s, the heavier the

smoothing. For a nu-qm.ntiuda curve, s vill range
normally from & minimum of 5 to & maximum of about 13.
This appears to be the optimm range for removing the
effect of chain quantization noise and yet preserving
significant fine detail. An illustration of line-
segment scanning is given in Pig. L.

A plot of 6: for a given chain-encoded curve pro-

vides ingight into the shape of the curve. The plot
is, of course, independent of the crientation of the
curve, and, if the abscissa is normalized, can be made
independent of scale as well. For a fairly straight

section of & curve, c:vm.nm-mz gero. For s
gentle curving to the left or right, §; vill maintain
a small positive or negative value, respectively. At
s point of inflection, &; vill change sign. At &

significant curvature discontinmuity, 6: vill take on

a succession of relatively large values, all of the
seme sign, and all compressed into a span of

precisely s+l links. This is readily apparent from
an inspection of Fig. L. The sum of the 6; values
over the s+l steps at a discontinuity is given by

1
0' - z 6'
L™

s s s s
et Nt Y

and is equal to twice the net angular change at the
discontinuity.

The detection of curvature discontinuity in the
presence of noise is, of course, & somevhat subjective
process. A chain is a special kind of straight-line
approximation of a curve in which all segments are of
lengths 1 or /5. and all angular changes are multiples
of U5 degrees. To get above the chain quantization
noise level, a value of s of at least 4 is required.
Heavier smoothing (s>L) is desirable, but at scme
increased value, valid curvature discontinuities will
be smoothed over. In the context of a chain represen-
tation (vhere true curvature continuity does not
exist), a discontinuity in curvature can only be de-
fined as the combination of three concatenated

sequences of 6: values - two during which 6: varies

about a small mean value (or about zero), separated by
one precisely of length s+l during which it differs
significantly from zero and accumulates a substantial

total variation 0;. In Fig. 4(b), this condition is
satisfied in the region i=19 to i=2i. For this
region the accumulated incremental curvature 023'

équals 189.2, indicating a net CCW curvature of 94.6
degrees. The curvature discontinuity is clearly
evident; its location is fixed at the value of i just

preceding the first significant value of 6:, that is,
at 1=18,

In general, we shall refer to the prominence of
a curvature discontinuity as its "cornericy” and
assign the following quantitative n-uure:u

8
Ky =78 %) Y

vhere t, and t, are the lengths of the 6:

to either side of the discontinuity, over which 6:
remains at & small mean value.

sequences,

For the purpose of shape matching (or fitting)
using scale- and orientation-invariant features, only
discontinuities with large cornerity values should be
used. Use of discontinuities with small cornerity
values may lead to erronecus segmentation.

Examination of Fig. 14(b) also shows that 62

changes sign at i=12, indicating the presence of a
point of inflection. The actual location of the
point of inflection is, of course, s/2 positions

earlier since 6: is labelled according to its leading

node. In the example shown, vith s=5, ve place the
point of inflection at i=10.

If the point of inflection is praominent, that
is, if there is a clear and abrupt shift of the radius
of curvature from one side of the chain to the other,
the preceding method will locate it. Not infrequent-
ly, howvever, a curve changes from convex to concave
curvature in a slov and meandering fashion. Then ve
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cannot determine the point of inflection in this way.
If the two regions of opposing curvature (for which wve
are seeking the point of inflection) are both pro-
longed and strong, ve may find their maxima. We then
cannect these two points of maximum curvature with a
straight line and take its intersection with the
chain, lying between the two regions of curvature, as
the point of inflection. If the two curvature regions
are not sufficiently strong, or are spaced too far
apart, the point of inflection cannot be reliably
determined and we must seek other critical points
elsevhere.

© 5. Centroidal Profile

An alternate scheme for representing the shape of
a blodb in an crientation- and scale-invariant manner
is provided by the centroidal profile. It is appli=~
cable only to closed curves and does not involve any
segmentation. The centroidal profile is simply a
normalized plot of the distance from the boundary to
the centroid of the blob, as a function of distance
along the boundary. Since the centroid's coordinates
are determined by the ratioc of first-order moments to
enclosed area, they are relatively insensitive to
noise, and the centroid thus tends to be a stable
point of reference for the blob. It a blodb is des-
cribed in the form of a chain, its centroid can be

rapidly camputed by means of a simple ugorithnm.

To obtain the centroidal profile for a chain-
coded blob, one first computes the location of the
centroid. Next one determines the distances from the
centroid to each chain node in sequence, beginning
with the initium of the chain. The Euclidean distance
measure could be used; however, a simpler and equally
effective measure for the purpose at hand is provided
by the residue-chain length. A residue chain between
twvo points is the standardized chain of minimum length

connecting the two pointlm. The camputation of resi-

due-chain length involves only the operations of addi-
tion and branching, and because of its simplicity is
the preferred distance measure for the centroidal pro-
file. Its use does require, howvever, that the
coordinates of the centroid he quantized to the
nearest grid node, thereby slightly increasing the
quantization noise in the blodb description.

For a closed chain, the choice of the initium is
normally arbitrary. To provide some uniformity in the
selection of the origin of the centroidal profile, the
initium is cyclically shifted to the chain node maxi-
mally distant from the cemtroid. If the maximum is
not unique, any of the maxima may be chosen. This
shifting of the initium provides some orientation in-
variance for the centroidal profile. However, if .
there is more than one maximum, there is an ambiguity

The dependence on scale can be removed by divid-
ing all profile values by the maximum value. The
actual maximum value will be called the vertical
normalization factor. Every centroidal profile thus
will have a value of unity at the origin and be less
than or equal to unity elsevhere.

One additional normalization step remains. There
s no fixed rule concerning the number of chain links
are needed to describe a given dlod. Guidelines
for selecting the quantization grid fineness
are based on the value of the minimum redius of
curvature that is to be preserved in the resulting

chue. Hovever, the selection of the smallest radius

iag:

e W 0 -
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of curvature is subjective, and a shape comparison
scheme should not be too rigidly dependent on such a
loose criterion. Accordingly ve must also normalize
the abscissa of the centroidal profile. This is done
by setting the maximum abscisss value - correspording
to one complete trace around the blob comtour (or,
equivalently, one pass over the complete chain) -
arbitrarily to 100. All other values are then
adjusted in proportion. The factor required to yield
the uniform abscissa scale will be called the horizon-
tal normalization factor. A centroidal profile,
together with the blodb whose shape it represents, is
shown in Fig. 5,

For the blob of Fig. 5, the vector fram the cen-
troid to successive chain nodes rotates uniformly
about the centroid in the clockwise sense. This will,
of course, not be the case in general. To avoid pos-
sible ambiguities in the interpretation of a centroid-
al profile, we shall take profile values corresponding
to clockwise angular rotation as being positive, and
those corresponding to counterclockwise rotation, as
being negative. An illustration of this is provided
by Fig. 6. .

The centroidal profile represents the blob with-
out regard to scale, orientation, and (in a limited
sense) quantization fineness. In effect only the
shape remains. Note that the profile generation pro-
cess is reversible; if the origin shift and the verti-
cal and horizontal normalization factors are known, it
is possible to reconstruct the blob chain from its
centroidal profile.

Two blobs may be compared as to their shape by
comparing their centroidal profiles. If both profiles
have a single, well-defined maximum (which, of course,
will be at the origin), the comparison is straight-
forvard. Suitable measures of shape dissimilarity are
the integral of the differences between the two pro-
file functions and the integral of the squared differ-
ences.

If one or both of the profiles have a maximum
that is not well defined, or have multiple maxima, a
better means for camparison is provided by convention-
al signal cross-correlation. This will yield a meas-
ure of the similarity as well as identify possible
errors in the origin selection.

It should be pointed out that the abscissa of the
centroidal profile represents the (normalized) link-
index parameter i of the boundary chain. It does not
represent uniform angular rotation about the centroid;
nor, in fact, is it a precise measure of distance
along the boundary because no account is taken of the
actual lengths of the links (1 or v2). This variationm
in link length, together with the initial chain-
generating quantization and the node-quantization of
the centroid mentioned earlier are the chief sources
of noise. Unless held to a low value by using a
sufficiently fine grid size, the effect of this noise
will be to reduce the quality of shape matching.

Same good "feel" for adequate quantization can be
gotten by selecting a blod that is representative of
those of interest, quantizing i% for two different
orientations, computing the corresponding centroidal
profiles, and then comparing these. If the quality
of match is satisfactory, the quantization fineness
is likely to be adequate.

The precision of the centroidal profile can be
improved - though at consideradble increase in process-
ing cost - by plotting the distance from centroid to
chain node against the angle this vector makes with
the x axis, and using the Puclidean distance from the
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true centroid (rather than from the node nearest the
centroid). The same origin shift and vertical normal-
ization are then applied. The abscissa range now
will, of course, be precisely equal to 360° and no
horizontal normalization is necessary. Although rela-
tively simple algorithms exist for calculating the
Euclidean distances between points and the angles

relative to the x Axislo. indications thus far are
that these refinements are not vorth the extra
effort.
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Fig. 1. Curve topologies of interest. (a) opem curve,
(b) closed curve, (c) pair of closed curves, (d) inter-
secting curves, (e) self-intersecting curve,

(f) tangent curves.

% Y7

e

o

(a) (v)

(e) (a)

Fig. 2. Four kinds of maps. (a) blob map, (b) contour
map, (c) flow map, (d) region map.
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! Pig. 3. Two curves considered for matching.
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Fig. 4. Illustration of line-segment scan. (a) chain
being scanned (s = 5); for sake of clarity, not all scan
segments are shown, (b) plot of incremental curvature as
a function of i.
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Fig. 6. Illustration of centroidal profile for a blob
rotating both positively and negatively about centroid.
(a) blob chain, (b) centroidal profile.
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SHAPE DESCRIPTION VIA THE USE OF CRITICAL POINTS*

Herbert Freeman
Rensselaer Polytechnic Institute
Troy, New York 12181

Summary

A key element in pattern recognition is the des-
cription of shape. For two-dimensional objects
(blobs), shape is conveyed by the curving of the bound-
ary line and is normally considered independent of
scale and orientation. The curving may be regarded as
a concatentation of arcs of varying instantaneous radii
of curvature, possibly interspersed occasionally by
discontinuities. The description of shape is facili-
tated by segmenting the boundary line at so-called
¢ritical points - corners (discontinuities in curva-
ture), points of inflection, and curvature maxima.
Additicnal critical points are intersections and
points of tangency. Algoritims are described for ex-
tracting such critical points in the presence of noise.
An illustration is given showing how the critical
points may be used in the development of a shape des-
cription system.

1. Introduction

The recognition of two-dimensional spatial pat-
terns is intimately linked with the classification of
shape. Shape is the composite effect of curvature; it
is a property of a curve, independent of scale and
orientation, and refers to the manner in which the
curve  deviates from some norm, such as a straight line
or a circle. We shall use the terms "line" and "curve"
interchangeably; a line is not presumed to be straight
unless explicitly so identified. Neither must a curve
be nop-straight. The kinds of curve topologies of
interest to us are shown in Fig. 1.

A closed curve traces a single path without end.
An open curve has two distinct end points. A closed
curve is always considered to be simply connected; a
multiply-connected curve is regarded as a set of two
or more distinct, closed curves, one of which encloses
all others. Both open and closed curves may intersect
other open or closed curves, as well as themselves.
A clcsed curve has a definite sense of direction,
which is such as to place the interior toward the
right. For an open curve, the direction is arbi-
trary.

The points at wvhich curves intersect or touch
will be called junctions. Junctions are characterized
by their radiality, which is the count of the number
of lines entering the junction. We speak of triradial,
quadradial, quintradial, etc. Junctions. Except in
very rare cases, pictures of natural processes exhibit
only triradial junctions. The existence of a quad-
redial junction is almost always evidence of a man-
msde feature. Junctions of radiality greater than
four are most rare.

At a Junction of radiality n, pairs of adjacent
curves will form n distinct, non-crossing paths
through the junction. At least n-2 of these paths
must exhibit a slope discontinuity (corner) at the
Junction. -

We shall regard all two-dimensional patterns as
occurring in the form of maps. Maps are special kinds
of line drawings that occur in the following four

¥ This vork was supported by the Air Force Office of
Scientific Research, Directorate of Mathematical and
Information Sciences, under Grant AFOSR 76-2937.
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types - blob maps, contour maps, flow maps, and region
maps. The four types are illustrated in Fig. 2.
Different types may be overlaid to form composite maps.

Blob maps are maps containing only closed curves,
none of which may contain another closed curve. Some
of the curves may be closed via the map boundary. The
closed curves (which each bound a blob) may touch but
not intersect each other. There are no end points.

Contour maps are like blob maps except that one
closed curve may contain one or more other closed
curves. Two curves may be tangent to each other pro-
vided one of the curves is contained within the other.
There are no end points.

Flow maps contain only open curves and these are
connected to form one or more tree structures. There
are no loops. All curves terminate either at junc-
tions or at end points. For each connected tree
structure, precisely one end point coincides with the
map boundary.

In region maps, the space is divided into mutu-
ally exclusive areas. All lines begin and terminate
at junctions or are closed (rare). There are no end
points.

We identify three kinds of problem tasks that
involve shape - "matching", "fitting", and "classify-
ing". In "matching" we desire to establish equiva-
lence (up to a certain level of precision) between
two curves vhich may be open or closed. The equiva-
lence may be on the basis of (1) shape alone,

(2) shape and scale, (3) shape and orientation, or
(4) shape, scale, and orientation.

In "fitting" we must establish that two open
curves (which are usually parts of two different
closed curves) are equivalent in scale and complement-
ary in shape. Two curves are said to be complementary
in shape if they are gecmetrically similar but are
traced out in the opposite sense. (The direction of
tracing is determined by the area bounded, which by
convention, is always assumed to lie toward the
right.)

"Classifying" refers to the process of assigning
given curves to predetermined categories. The assign-
ment may be based solely on shape, or it may involve
scale and orientation as well.

2. Shape Description

One of the difficulties in any shape processing
task is the lack of a definitive way of describing
shape. Many investigators have devoted attention to
this task and a variety of approaches have been

propoudl"r. We shall follow a method originally pro-
posed by Attneave and Arnoult and divide a curve into
segments and then use relatively simple features for
characterizing the segments. Key to this method is an
effective segmentation scheme. Later we shall also
consider a scheme, applicable to closed curves only,

that does not require segmentation.

In all that follows it will be assumed that the
curves have been quantized into a square lattice of

sufficient fineness to preserve the desired detail

T
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and then encoded in terms of the 8-direction chain

codea.

We shall first examine the shape matching problem.
A tried and effective technique for matching two
chains (open or closed) is the chain correlation
scheme, so called because of its analogy to conven-

tional signal correlationg. It is given by

, 8
(§)= = cos(a,=b,  )m/L

°cb J n 121 >
wvhere the & and b1 are, respectively, the ordered
links in the two chains. Chain correlation has the
drawback, however, of being rigidly dependent on scale
and orientation. To use it for matching the shape of
twvo chains of different scale and orientation, one of
the chains must first be rotated and scaled to bring
it into alignment with the other. To determine the
amounts of rotation and scaling required, some further
information about the two chains must be available.

To take a very simple example, suppose two open
chains are to be checked for a shape match, independ-
ently of scale and orientation. One can connect the
two end points of each chain with a straight line seg-
ment. The relative lengths of the two segments then
provides a basis for adjusting the scale of one chain
to that of the other; the angle between the two seg-
ments establishes the amount of rotation required to
bring the two chains into alignment. (Note that such
scaling and rotating introduces additional quantiza-
tion noise.) After the scale and orientation adjust-
ment, the two chains can be correlated against each
other to determine the exact degree of match.

The simple scheme just described has serious defi-
ciencies. First of all, it will not work for closed
curves. Second, the scheme is overly dependent on the
precise locations of the end points. Relatively
slight variations here will cause erroneocus scale and
orientation normalizations, and result in failure of
tke correlation test, even for chain pairs that are
otherwvise very similar in shape. Finally, the scheme
is inapplicable to the "fitting" problem, where a
section of one chain is to be shown to be of comple-
mentary shape to a section of another chain - without
any a priori knowledge of orientation (and, possibly,
scale as vell). We shall now develop a more powerful
method which overcomes these difficulties.

Even if we expect two curves to match in their
entirety, it would be unwise to test them for match
over their full length at once. Part of one chain may
be missing or severely distorted by noise, or perhaps
a part may have been compressed. Or a chain may have
been bent, placing its two parts at a wrong angle
relative to each other. Although such effects clearly
reduce the quality of a match, they should not be
permitted to overvhelm evidence of good matching in
other parts of the chains. The only solution to this
is to segment the chains, and to proceed with the
match on a section-by-section basis.

If the chains to be matched are supposed to have
the same scale and orientation, and cross-correlation
is to be used, segmentation presents no problem.
Since in the correlation process one chain (or chain
section) is anyway shifted relative to the other,
selection of the segmentation points is virtually
arbitrary. A totally different approach, however, is
called for if the relative scale and orientation of
the two chains are not a priori known.

3. Critical Points

If we wish to compare two chains independently of
their relative scale and orientation, we must find
features in them that are invariant under these para-
meters, For this purpose we shall call upon the so-
called "critical points" of the chains.

In classical geometry, the "critical points" of
a curve are its maxima, minima, and points of inflec-
tion. Our interest here in curves is more far-
reaching, and we shall expand the concept of critical
points to include also discontinuities in curvature,
end points, intersections (Jjunctions), and points of
tangency. To a varying degree, these points are all
well-defined and their character is unaffected by the
transformations of scale and rotation.

Let us consider the two curves shown in Fig. 3.
Visual inspection shows them to be of apparent similar
shape, though, of difference size, different orienta-
tion, and different sense of direction. We note that
each curve has two fairly sharp discontinuities in
curvature (DICs). If the two curves are indeed of the
same shape and there is a pairwise correspondence be-
tween the DICs, then there must be point-for-point
shape correspondence in the sections between the DICs.
And, of course, all shape-related features that are
independent of scale and orientation will be the same
for both.

We first connect the two DICs in each curve with
a straight line segment and determine its length.
Suitable features to be computed next are (1) the
length of the curve section between the DICs, (2) the
total "bay" area lying between the curve section and
the straight line segment (the "bays" lie toward the
left of the curve), (3) the total "peninsula" area
(lying toward the right of the curve), (L4) the maximum
"bay" depth, and (5) the maximum "peninsula" depth.
All these features are, of course, independent of
orientation. To make them also independent of scale,
we divide each linear feature by the segment distance

EE, and each area feature, by 332. The features are
illustrated in Fig. 3.

Simple, efficient algorithms exist for computing
the foregoing features if the curves are represented

in the form of chnin:lo. Observe that if for two

curve sections the features are pairwise in close
agreement, then we have strong indication that the
curves are of the same shape; though, of course, a
correlation or other point-by-point check is needed to
establish this for certain. Conversely, any major
discrepancy in a feature is indicative of a difference
in shape. If for two chains all features match except
that the bay features of one match to the peninsula
features of the other, then the two chains are likely
to be of complementary shape and thus potential candi-
dates for fitting.

In the foregoing example we selected DICs to
define curve sections for matching. Of all the criti-
cal points, DICs (as well as junctions) are the most
sharply and most reliably defined. End points are
also sharply defined; however, their location is less
dependable since occlusion of part of a curve will
cause a false end point to be generated. The next
best critical points to use (if DICs and junctions are
not available) are points of inflection and points of
maximum curvature (maxima or minima). We shall dis-
cuss these further in the next section in connection
with the determination of critical points.
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L. Determination of Critical Points

Junctions and end points require no special
effort for their determination; they are available
directly from the chain data structure. Discontinui-
ties in curvature, however, must be extracted by com-
putation. A scheme that has been found to be effec-

tive for this purpose is the line segment lcn.nn.
described as follows.
We consider a chain (li}n. 115{0,...,7), and
b S

define a straight line segment L: that connects the
the ipitium of Ty to the terminus of 8. The
length of L: can vary from a maximm of s/2 to a min-

igmum of 1; howvever, for a well-quantized curve, it
should never be less than s/2. The actual length of

LI is, of course, given by

1/2
s s,2 8,2
li = [(xi) + (Yi) ]

i
where X3 = ) a,

Jmi-g+l
L%

Y. = a
- J=i-a+l y

and where the a and a are, respectively, the x and

ix iy
y components of the chain links, iy e{-1,0,1}.

a8
The angle between the x axis and the forward
direction of the line segment is

s
i

s
i

«cot™ x}/; ir x| < |1}

=l 8 s s
6, = tan Y,/X; if lxil > |Y1|

and can vary from O to 360 degrees. Of particular
interest is the variation in this angle as L scans

i
over the chain. Note that for a closed chain,
a =a . We defipe

i i-n
s s s
b B Rl

as the incremental curvature of the chain; it is
equal to twice the mean over two successive angular
differences. The incremental curvature is a smoothed
measure of curvature; the greater s, the heavier the

smoothing. For a well-quantized™ curve, s will range
normally from a minimum of 5 to a maximum of about 13.
This appears to be the optimum range for removing the
effect of chain quantization noise and yet preserving
significant fine detail. An illustration of line-
segment scanning is given in Fig. L.

A plot of 6: for a given chain-encoded curve pro-

vides insight into the shape of the curve. The plot
is, of course, independent of the orientation of the
curve, and, if the abscissa is normalized, .can be made
independent of scale as well. For a fairly straight

section of a curve, 6; wvill hover about zero. For a
gentle curving to the left or right, 6: will maintain
a small positive or negative value, respectively. At
a point of inflectionm, 6: will change sign. At a

significant curvature discontinuity, 6: will take on

a succession of relatively large values, all of the
same sign, and all compressed into a span of

precisely s+l links. This is readily apparent from
an inspection of Fig. 4. The sum of the 6,‘ values
over the s+l steps at a discontinuity is given by

1
of= 1 &
J=i-s J
~ s ] s
UL R TN R

and is equal to twice the net angular change at the
discontinuity.

The detection of curvature discontinuity in the
presence of noise is, of course, a somewvhat subjective
process. A chain is a special kind of straight-line
approximation of a curve in which all segments are of
lengths 1 or v2, and all angular changes are multiples
of 45 degrees. To get above the chain quantizationm
noise level, a value of s of at least 4 is required.
Heavier smoothing (s>L) is desirable, but at scme
increased value, valid curvature discontinuities will
be smoothed over. In the context of a chain represen-
tation (where true curvature continuity does not
exist), a discontinuity in curvature can only be de-
fined as the combination of three concatenated

sequences of 6: values - two during which 6? varies

about a small mean value (or about zero), separated by
one precisely of length s+l during which it differs
significantly from zero and accumulares a substantial

total variation 0:. In Fig. 4(b), this condition is
satisfied in the region i=19 to i=24. For this
region the accumulated incremental curvature 023'

équals 189.2, indicating a net CCW curveture of 94.6
degrees. The curvature discontinuity is clearly
evident; its location is fixed at the value of i Just

preceding the first significant value of 6:, that is,
at i=18.

In general, we shall refer to the prominence of
a curvature discontinuity as its "cornerisy" and
assign the following quantitative meuure:u

s
By %% % Poeenr
where ‘1 and t2 are the lengths of the 6; sequences,

to either side of the discontinuity, over which 6?
remains at a small mean value.

For the purpose of shape matching (or fitting)
using scale- and orientation-invariant features, only
discontinuities with large cornerity values should be
used. Use of discontinuities with small cornerity
values may lead to erroneous segmentation.

Examination of Fig. 14(b) also shows that 62

changes sign at i=12, ihdiclting the presence of a
point of inflection. The actual location of the
point of inflection is, of course, s/2 positions

earlier since 6: is labelled according to its leading

node. In the example shown, with s=5, we place the
point of inflection at iw=l0.

If the point of inflection is prominent, that
is, if there is a clear and abrupt shift of the radius
of curvature from one side of the chain to the other,
the preceding method will locate it. Not infrequent-
ly, hovever, a curve changes from convex to concave
curvature in a slov and meandering fashion. Then we




cannot determine the point of inflection in this way.
If the two regions of opposing curvature (for which we
are seeking the point of inflection) are both pro-
longed and strong, ve may find their maxima. We then
cannect these two points of maximum curvature with a
straight line and take its intersection with the
chain, lying between the two regions of curvature, as
the point of inflection. If the two curvature regions
are not sufficiently strong, or are spaced too far
apart, the point of inflection cannot be reliably
determined and we must seek other critical points
elsevhere.

5. Centroidal Profile

An alternate scheme for representing the shape of
a blod in an orientation- and scale-invariant manner
is provided by the centroidal profile. It is appli-
cable only to closed curves and does not involve any
segmentation. The centroidal profile is simply e
normalized plot of the distance from the boundary to
the centroid of the blob, as a function of distance
along the boundary. Since the centroid's coordinates
are determined by the ratioc of first-order moments to
enclosed area, they are relatively insensitive to
ncise, and the centroid thus tends to be a stable
point of reference for the blob. It a blob is des-
cribed in the form of a chain, its centroid can be

rapidly camputed by means of a simple u.zoritlmlo.

To obtain the centroidal profile for a chain-
coded blob, one first computes the location of the
centroid. Next one determines the distances from the
centroid to each chain node in sequence, beginning
with the initium of the chain. The Euclidean distance
measure could be used; however, a simpler and equally
effective measure for the purpose at hand is provided
by the residue-chain length. A residue chain between
two points is the standardized chain of minimum length

connecting the two pointllo. The camputation of resi.
due-chain length involves only the operstions of addi-
tion and branching, and because of its simplicity is
the preferred distance measure for the centroidal pro-
file. Its use does require, however, that the
coordinates of the centroid be quantized to the
nearest grid node, thereby slightly increasing the
quantization noise in the blod description.

For a closed chain, the choice of the initium is
normally arbitrary. To provide some uniformity in the
selection of the origin of the centroidal profile, the
initium is cyclically shifted to the chain node maxi-
mally distant from the centroid. If the maximum is
not unique, any of the maxima may be chosen. This
shifting of the initium provides some orientation in-
variance for the centroidal profile. However, if
there is more than one maximum, there is an ambiguity
of order equal to the mumber of maximally-distant
chain nodes. This is only a minor drawback, as ve
shall see shortly.

The dependence on scale can be removed by divid-
ing all profile values by the maximum value. The
actual maximum value will be called the vertical
normalization factor. Every centroidal profile thus
will have a value of unity at the origin and be less
than or equal to unity elsewvhere.

One additional normalization step remains. There
is no fixed rule concerning the number of chain links
that are needed to describe a given blob. Guidelines
exist for selecting the quantization grid fineness
that are based on the value of the minimum radius of
curvature that is to be preserved in the resulting

cmna. However, the selection of the smallest radius

of curvature is subjective, and a shape comparison
scheme should not be too rigidly dependent on such a
loose criterion. Accordingly we must also normalize
the abscissa of the centroidal profile. This is done
by setting the maximum abscissa value - corresponding
to one complete trace around the blob contour (or,
equivalently, one pass over the ccmplete chain) -
arbitrarily to 100. All other values are then
adjusted in proportion. The factor required to yield
the uniform abscissa scale will be called the horizon-
tal normalization factor. A centroidal profile,
together with the blob whose shape it represents, is
shown in Fig. 5.

For the blob of Fig. 5, the vector from the cen-
troid to successive chain nodes rotates uniformly
about the centroid in the clockwise sense. This will,
of course, not be the case in general. To avoid pos-
sible ambiguities in the interpretation of a centroid-
al profile, we shall take profile values corresponding
to clockwise angular rotation as being positive, and
those corresponding to counterclockwise rotation, as
being negative. An illustration of this is provided
by Fig. 6. 4

The centroidal profile represents the blob with-
out regard to scale, orientation, and (in a limited
sense) quantization fineness. In effect only the
shape remains. Note that the profile generation pro-
cess is reversible; if the origin shift and the verti-
2al and horizontal normalization factors are known, it
is possible to reconstruct the blob chain from its
centroidal profile.

Two blobs may be compared as to their shape by
comparing their centroidal profiles. If both profiles
have a single, well-defined maximum (which, of course,
will be at the origin), the comparison is straight-
forward. Suitable measures of shape dissimilarity are
the integral of the differences between the two pro-
file functions and the integral of the squared differ-
ences.

If one or both of the profiles have a maximum
that is not well defined, or have multiple maximas, a
better means for comparison is provided by convention-
al signal cross-correlation. This will yield a meas-
ure of the similarity as well as identify possible
errors in the origin selection.

It should be pointed out that the abscissa of the
centroidal profile represents the (normalized) link-
index parameter i of the boundary chain. It does pot
represent uniform angular rotation about the centroid;
nor, in fact, is it a precise measure of distance
along the boundary because no account is taken of the
actual lengths of the links (1 or v2). This variation
in link length, together with the initial chain-
generating quantization and the node-quantization of
the centroid mentioned earlier are the chief sources
of noise. Unless held to a low value by using a
sufficiently fine grid size, the effect of this noise
will be to reduce the quality of shape matching.

Scme good "feel" for adequate quantization can be
gotten by selecting a blob that is representative of
those of interest, quantizing it for two different
orientations, computing the corresponding centroidal
profiles, and then comparing these. If the quality
of match is satisfactory, the quantization fineness
is likely to be adequate.

The precision of the centroidal profile can be
improved - though at considerable increase in process-
ing cost - by plotting the distance from centroid to
chain node against the angle this vector makes with
the x axis, and using the Buclidean distance from the




i3 true centroid (rather than fram the node nearest the

centroid). The same origin shift and vertical normal-
i3 ization are then applied. The abscissa range nov

” will, of course, be precisely equal to 360° and no

horizontal normalization is necessary. Although rela-
tively simple algorithms exist for calculating the
3 Buclidean distances between points and the angles
'y relative to the x uilm, indications thus far are
that these refinements are not vorth the extra
effort.
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Fig. 3. Two curves considered for matching.
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Fig. 4. Illustration of line-segment scan. (a) chain
being scanned (s = 5); for sake of clarity, not all scan
segments are shown, (b) plot of incremental curvature as
a function of i.
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Fig. 5. Illustration of centroidal profile.
(a) chain-coded closed curve, (b) corresponding profile
based on chain-residue distance
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Fig. 6. Illustration of centroidal profile for a blod
rotating both positively and negatively about centroid.
(a) blodb chain, (b) centroidal profile.




